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1. Introduction

This document is the fifth progress report submitted each six weeks in accordance

with the requirementsof contract NOOO14-75-C-1O4Oand contains a summary of the

work accomplished on the subject contract during the reporting period 1 January

1976 through 15 February 1976. The work outlined in the Contract Work Statement

is proceeding on schedule and no unanticipateddifficulties or problem areas have

been encountered.

II. Work Accomplished During the Current Reporting Period

Substantial progress was made during the current reporting period which was

devoted to the following areas:

o Further correlation properties of four-state sequences.

o Implementationof four-state sequences in systems using correlation detectors.

o Spectral properties of four-state sequences.

The cross-correlationfunction of any two maximal four-state sequences was deter-

mined in terms of the cross-correlationfunction of the binary sequences used to

represent them. Two general formulas were obtained, each of which applies depending

on whether the four-state sequences being correlated are of the same or opposite

category. It was shown that the cross-correlationfunction of two maximal four-

state sequences of opposite category is real valued.

The mean square value of the cross-correlationfunction of any two maximal four-

state sequences has been determined. For two maximal four-state sequences of

opposite category the mean square value of their cross-correlationfunction”is
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found to be less than that for binary maximal sequences of the same period. w?
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We thus conclude that the four-state sequences will perform better with respect ;=
w7

$:;
to their cross-correlationproperties than binary sequences of the same period.

The role of the correlation function of two four-state sequences as previously

defined in this study was examined from an implementationpoint of view.

Specifically, the output of a correlation detector receiving a four-state encoded

signal and using a four-state encoded local reference was computed and the dependence

of this output on the correlation function of the corresponding sequences was

determined.

The spectral propert

and a general formu”

formula was applied

sequences.

es of signals encoded with four-state sequences were studied

a for the determination of their spectra was developed. This

to determine the power density spectrum of maximal four-state

III. Meetings

A presentation describing the results to date on the subject study was made to

Naval Research Laboratories personnel by Dr. Robert Gold, consultant to Collins

Radio Group, on 14 January 1976. Those properties of four-state sequences having

potential applications to coded communication systems were emphasized. Mr. Jim

Allen of

in order

Naval Research Laboratories

to acquaint potential users

suggested subsequent presentations be arranged

with the techniques being developed.

IV. Personnel

Personnel expending effort on the subject contract during the current reporting

period: Dr. Robert Gold, consultant, Collins Radio Group.
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v. Plans For Next Reporting Period

In accordance with the contract work statement, a study of the correlation

properties of four-state Gold families will be initiated.

VI. Technical Appendices—

Appendix E included in this report contains the technical details of the

results described above.
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APPENDIX E

CORRELATION AND SPECTRAL PROPERTIES OF FOUR-STATE SEQUENCES

E.1 GENERAL EXPRESSION FOR CROSS-CORRELATIONOF MAXIMAL FOUR-STATE

SEQUENCES.

If a is four-state maximal sequence generated by the primitive four-state

polynomial f(x) s GF(4) [x] then we have shown in a previous theorem that,,

the four-state sequence a can be represented as the interleavingof two

binary sequences generated by the binary polynomial f(x) ‘~. In particu-

lar, with respect to the basis {f3,f32}we have

a= (aOSap/3) for f(x) of category one (f(0) = (3)and

a = (ao$a2p ) for f(x) of category two (f(o) = 62) when

T

p, pm-)
ao=

f(x) ~

In this section we determine the cross-correlationfunction of any two maximal

four-state sequences a and b in terms of the cross-correlationfunctions of the

binary maximal sequences used to represent them.

Theorem: Let a and b be two maximal four-state sequences

am(f(x)); f(x)&GF(4)[x].

bsv(g(x)); g(x)sGF(4)[x]0

p ~ (m)
Let ao=

f(x) ‘~

PI (m)
and bo=

f(x) ‘~
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with respect to the basis (@36z). Then if a and b are Of the same

category one

Re e(a,b)(~)= e(aO,bO) (T)

O(a ,b )(T) - 6(a0,bp/3)(~)O 2p/3
Im o(a, b)(~)=

2

if a and b are

Re e(a,b)(~)=

Im@(a,b)(~) =

of different category a category one b category 2

e(ao,bo)(~) + 6(aosbp,3)

2

0

Proof: By a previous theorem we know that if a and b are any two four-state

sequences then

[

e(al~b,)(~) + e(a2sb2)(~)

1[.

e(a2,b1)(~) - f3(a1,b2)(~)

6(a,b)(~)= 2
+j

2 1
Where [al‘a21

1

is the representationwith respect to the basis”{~ypz}

[bl‘b2]

Haof the four-state sequence as the interleavingof binary sequences.
b

Case 1: Suppose a and b are both of category 1 then by a previous theorem we have

a = (ao,ap,3) b = (bo,bp,3) with respect to the basis {6,62}. Thus

using the above expression for e(a,b) we have

e(ao~bo)(~) +O(ap/3,bp,3)(~)
Re 6(a,b)(~)= = o(ao,bo)(~)

2

E-2



with respect to the basis (6,62). Then if a and b are of the same

category one

Re o(a,b)(~)= e(aO,bo) (T)

O(a ,b
O 2p/3)(T) - 6(ao,bp/3)(-r)

Im 6(a,b)(-T)=
2

if a and b are

Re e(a,b)(~)=

Im@(a,b)(~) =

of different category a category one b category 2

6(ao,bo)(~)+ 6(aO>bp,3)

2

0

Proof: By a previous theoremwe know that if a and b are any two four-state

sequences then

[

e(al~b,)(~) +e(az,bz)(~)

1[.

e(az,b,)(~) - e(al,bz)(~)

e(a,b)(~)= 2
+j

2 1.
Where [al‘a21

1

is the representationwith respect to the basis’{6,B2}

[bl’b2]

Haof the four-state sequence
b

as the interleavingof binary sequences.

Case 1: Suppose a and b are both of category 1 then by a previous theorem we have

a = (ao,ap,3) b = (bo,bp,3) with respect to the basis {6,62}. Thus

using the above expression for 6(a,b) we have

e(ao,bo)(~) +e(ap/3,bp,3)(T)
Re 6(a,b)(~)= = o(ao,bO)(r)

2
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f3(a~,3,bO)(~) - 6(a0,bp,3)(~)
Im e(a,b)(=)=

2

e(ao~b2p,3)(T) - e(ao,bp,3)(~)
.—

9
L

Case 2: Suppose a is of category one and b is of category two. Then

by previous theorem we have

a=[a~’ad b= [$@2P,3]

with respect to the basis (B,f32). Thu$ using the above expression for

f3(a,b)we have

Re ~o(a,b)(~~=

=

e(ao,bo)(~) +e(ap/3~b2p,3)(~)

2

6(a0,bO)(~) + e(aO>bp/3)(~)

c

Im [e(a,b) (~]=e(ap/3’bO) (T) - ‘(a0’b2p/3) (T) = 0

2

Example: In what follows we illustrate the results of the above theorem.

(1) We select two maximal four-state polynomials from our tables

of degree 2. These polynomials are listed in the tables as 1 All

and 7 AAl and they represent the second degree polynomials

f(x)=B+x+x2 and g(x)= 6+@x+x2 respectively. We note that since

f(0)=g(O)=B these polynomials are of the same category.
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The polynomial ‘~ = h(x) = B2+B2X+X2 is of the opposite category

to g(x) and f(x).

(2) The characteristicsequences of V(B+X+X2), V(6+f3x+x2)and

V(~2+62x+x2)are

O 1 2 34 56 7 89 10 11 12 13 14

a= (Xf)‘+f x =
f ‘= oB2@B2f32061B 601 f3211

c= (xh) ‘+h = 62X
=011 B210B 606

h
of32B2f362

#+f32x+x2

(3) With respect to the basis (B,f32)these four-state maximal sequences

are represented as the interleaved sequences

a = [1ao’a5 b ‘[ bo’bs l(category1) c=Co’clo‘category2)[1
a =00011001010010111 0100010011111

b= 0011111 011 OOOIOl 11010010100110

c= 001 1 1 1 01 1 1 001 01 01 1 1 00001 01 1 001

01234567891011 121314

a.
=00100011110 1o11 EV(1+X+X4)

34
bo= 01 1 1 10001 0 0 1 1 0 1 Ev(l+x +x )

co= 0110101111 00010 EV(1+X3+X4)

E-4



(4) The

a and b

cross-correlation

which are both of

m
&~

i-)

r-
aw

function of the four-state maximal sequences
<&
*
*.-I

the first category and sequences a and c where *-
●n
tm

sequence c is of the second category may be expressed in terms of the

cross-correlationfunction of the maximal binary sequences aO,bO and

ao’corespectively. The required binary cross-correlationfunctions are

readily computed to be:

O 1 2 3 4 5 6 7 8 9 1011121314

f3(ao,bo)(~) = -1 -5 -5 3-5 7 3 -1 -5 3 7 -1 3 -1 -1

e(ao,+o)(~) = 7-1 3 -l-l-l-5-53-573-l-5 3

6(ao,b5)(~) = 73 -1-537-1 3 -l-l-l-5-53-5

e(ao,co)(~) = 73 -1-537-1 3 -l-l-l-5-53-5

e(ao,c5)(~) = 7 -13-1-1-1-5-53-573-1 -53

using the above theorem we find

O(ao,blo)(T) - e(ao,b5)
e(a,b)(~) = e(ao,bo)(~) +j

9c.

e(ao,co)(~) + e(ao9c5)(~)
e(a,c)(~) = + j*(l

2

Thus we have

‘c O(a,b)(~)
o -1 + oj
1 -5 - 2j
2 -5 + 2j

3+zj
-5 - 2j

5 7-4j
6 3 - 2j

f3(a,c)(~)

7+Oj
l+oj
l+oj
-3 + oj
l+Oj
3-toj
-3 + oj

E-5



7
8

1:
11
12
13
14

-1 - 4j
-5 -tZj
3- 2j
7+4j

-1 + 4j
3+2j
-1 - 4j
-1 + 4j

-1 + oj
l+oj
-3 + oj
S+oj
-1 + oj
-3 + f)j
-1 + oj
-1 + (lj

These correlation functions may be verified by computing e(a,b) and O(a,c)

directly from the four-state sequences.

The above result shows that the cross-correlationfunction O(a,c) of any

two maximal four-state sequences a and c of opposite category is real

valued. Furthermore, the upper bound of~o(a,c)] is less than or equal

to the upper bound ofe(ao,co) where a. and co are the corresponding

binary sequences whose interleavingrepresents a and c respectively. In

fact we have

Max
‘c

Max
T

< M$x

[

< Max
T

= Mfx

e(a,c)(~)

e(ao3co)(T) + e(ao,c5)(~)

2

/(0 aosco)(T)l le(aosc5)(’T)[
+

2 2 1
[e(ao$co)(~)l+~axle(ao,cs)(~)l

2 ‘r 2

I
e(ao~co)(~)I

A plot of the cross-correlationfunction of the binary and four-state

sequences of opposite category is presented in figure E-1.
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Figure E-1 : Comparison of Cross-Correlationof four-state and binary maximal sequences of opposite category.
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E.2 SUMOF SQUARES OF CROSS-CORRELATIONFUNCTION VALUES

In the previous section we showed that the bound on the absolute

value of the cross-correlationfunction of two four-state maximal

sequences of opposite category is less than or equal to the bound

on the absolute value of the cross-correlationfunction of the

two corresponding binary maximal sequences. We now compute the

sum of the squares of the absolute values of the cross-correlation

function of two maximal four-state and binary sequences and show

that for maximal four-state sequences of opposite category, this

sum of squares is less than the sum for the correlation function of

the corresponding binary sequences.

Theorem: Let a and b be maximal four-state sequences of period

4n-l=P. Then

P-1

[

~.24n-l -22n -1 for a and b of the same category

El
I

*e24n-1 -22n -1
o(a,b)(~) 2= for a and b binary

T=o *4n-1 -22n -1 for a and b of the opposite category ,

Proof: We have shown in a previous theorem that for any two maximal four-state

sequences of period P we have

P-1 P-1

xl
I

2
e(a,b)(~) = z

T=() T=o

E-8
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For a and b four-state maximal sequences of the same category or

binary, we have e(a,a)(-r)= e(b,b)(~) and hence

P-1 P-1

xl II0(a,b)2(T) =
I

2
e(a,a)(~)

T=O T.o

Using our previous evaluation of the auto correlation function of

a maximal four-state sequence we have

P-1

If IO(a,a)(T)2=(4n-1)2 + 2(-1+j*~n)(-1-j*$n)+ 4n-4
~=o

4fl-1-22n-,
= 3“2

For a,and b binary sequences

P-1

II
I

e(a,a)(~) 2 = (4n-1)2 + 4n-2
‘r=o

= 2“2
4n-1-22n

-1

For a and b four-state maximal sequences of opposite category

e(a$a)(d = e(b,b)(~) for -c=O-r#4n-1, 2(4n-1)
3 3

()
r

e(a,a) 2(4~-1).0(b,b)(~)= -l-j~

J

a Of say

first category

E-9



Hence we have

P-1 P-1

II Ize(a,b)2(~) = e(a,a)(~) ‘~
-r=o T=o

= (4’’-1)2+(-1+,+~(-1-j4J-)2+4n-4

*4n-1= -22” -1

For the sequences of period 42-1=15 of the previous example, we

have

a,b same category

e(a,b)?~)

1
29
29
13
29
65
13

ao’bobinary
e(ao,bo)2(T)I

1

25
25
9
25
49
9

;5

;9

;
1
1

a,c opposite category

I
e(a,c)2(~)

I

49

;
9
1
9
9
1
1
9
9
1
9
1
1

E-10



For n=2

3“ ~4n-1 -22n -1 = 367

2
. 24n-1

-22” -1 = 239

1
. 24n-1 -22n -1 = 111

E.3 ROLE OF o IN CORRELATION DETECTION

E.3-1 ENCODING OF SIGNALS

In this section we describe the use of the four-state sequence to encode

a carrier. Each of the four-states may be used to determine a phase of

the carrier. Let a be the four-state sequence. Lety be the real valued

mapping of GF(4) given by

y(o) = o; Y(1) =fi ; Y(6)=+; Y(f32)=;

The encoded carrier is then given by the equation’
m

s(t) =
i

cos wt+y(a(k)) f. (t-Ak)
=-m

where fo(t) = 1 for O<t<A--

=0 Otherwise

The encoded carrier is illustrated in Figure E-2.

E-1?
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(a) IT/2 ‘IT T 31T/2 ● “”

Figure E-2. Carrier Encoded with Four-State Sequence
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The above encoded carrier may also be represented as the real part

of a complex signals i.e.:

( 1 eiY@k)) f (t-Ak)s(t) = Re f(t)eiwt where f(t) = ~
k=-co o

We note that V(X) = eiY(x) for all X E GF(4)

where rIis the previously defined complex valued mapping of GF(4)

l-l(o)= o TI(8) = i

T-1(l)= -1 TI(62)=-f

Thus the encoded carrier has the representation

s(t) = Re [f(t) eiwt] where f(t) = i n(a(k)) fo(t-Ak)
k=-m

E.3-2 COMPUTATION OF OUTPUTOF CORRELATION DETECTOR

In a spread spectrum communication system, the incoming encodedsignal

sl(t) is multiplied by a locally generated replica of the received signal

to remove the code and recover the base-band information. In this

section we describe this process for four-state sequences and indicate the

importance of their correlation function.

Let the received signal be:

Sl(t) = f cos(wt+y(a(k))) fo(t-Ak) = Re fl(t)eiut
k=-m

Where a is four-state sequences

E-13



y is real valued mapping ofGF(4) 0+0 6 + lT/2

1+7T 62 ~3Tr/2

f,(t) = ~ n(a(k))fo (t-Ak)
k=.m

TI(X)=eiy(x)

Let the locally generated signal be identical in form to sl(t) but encoded

with a possibly different four-state sequence b:

AP
Then R(T) =

!

s,(t) sz(t-~) dt

o

m

v (COS UT) Re g(a,b)(f)

1

- sin M-CIm O(a,b)(l) R(fo, fo)(pAl)
=

&-CKl 2

m

Where R(fo,fo)(-r)=
J

fo(s) fo(s-~)ds

-m

We prove the above result in three steps

(1) We first show that

AP AP

R(T) =
J [/

sl(t) sz(t-~)dt = ~ Re eiu~ fl(t) fz(t-~)dt
1

0 0

~ m(a(k)) f. (t-Ak)where fl(t) = k=-m

fz(t) = ~ n(b(k)) f. (t-Ak)

k=-cu

E-14
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This result shows that the correlation function of the received

signal and the locally generated reference depends essentially

on the correlation function of the baseband encoded wave forms

AP

f, and f2 i.e., on
1

fl(t) f2(t-~)dt.

o

(2) We next show that

AP w

R(flsf2)(d =
J

fl(t) f2(t-~)dt =
I

9(a,b)(k) R(fo,fo)(~-Ak)

o k.xo

cm

where Mfo,fo)(T) =
J

fo(t) fo(t-~)dt

-co

This result shows that the correlation function of the encoded baseband

wave forms depends essentially on the correlation function O(a,b) of the

four-state encoding sequences a and b.

(3) The final expression for the correlation function of the received and

locally generated signals s,(t) and s2(t) respectively is obtained by

substituting the expression for the correlation function of the baseband

signals given in (2),

R(f,,f2)(~) = ~ o(a,b)(~) R(fo,fo)(~-Ak)
k=-m

E-15



into the expression for the correlation function of the received
<P,
,...,,.~

and locally generated signals given in (1)
,-,
Pm
!=

AP AP

! [1s,(t) s2(t-~)dt = ~ Re eiuT fl(t) ~dt

o 0 1

OY

[ N
iw~

~Ree Re6(iisb)(k)+i= Im O(a,b) (k) 1R(fo,fo)(t-Ak)

k=- W 1

w

=

q
(COS UT) Re e(a,b)(k) - (sin M-c)Im e(a,b)(k

k=.w 2 ‘1R(fo,fo)(t-Ak)
Proof of result (1)

R(T)

J ()‘1 t s2(t-~)dt

o

o
Re(zl’z2) +Re(z1”~2)

We now use the identity (Re Zl) (Re Z2) =

2

E-16
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AP

n1 Re f,(t) f2(t-~)ei~(zt-~) + Re f,(t) f2(t-~)e

1

—iW-c ~t
7

0

Since the integral of the first term is zero, we have:

Proof of result (2)

R (fl,fz)(~)

fl(t) ‘~dt

1[
m

n (a(k)) fo(t-Ak
I
j=-m

n(b(k))fo(t-~-Aj)

co w AP

dt

E-17
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E.4

E.4-1

Let s = t-ak so that t-~-Aj = S-T + A(k-j)

w P-1 A

J“=-w k=O ‘o

Let k = k-j so that j=k-fi

w P-1 m

~ ~n(a(k)) ~)j fo(s) fo(s-(T-Ad)dS

L=-CO k=() -m

Cn

I 6(a,b)(2) R (fo,fo)(-r-A!t)

J@-m

POWER SPECTRAL DENSITY OF FOUR-STATE ENCODED SIGNAL

Our objective in this section is to compute the power spectral density

of a four-state encoded signal. We do this in the series of results

that follow.

POWER SPECTRAL DENSITY OF ENCODED BASE BAND SIGNAL

Result - Let a be a four-state sequence of period P

Let f(t) =
k~m ‘(a(k)) d (t-Ak)--

E-18



where
l-n

Tl(o)= 1 ~(l) = -1 n(6) = i d) ‘-i t:;?

The power density spectrum of the baseband signal f is given by

where 0 is the auto-correlationfunction of the binary sequence a

i.e.

f3(a,a)(~)= ~ m(a(i)) -) and F(o) is the digital

i=O

fourier transform of the complex valued periodic sequence e

P-1 -2mijk

F(e)(J) =
z

-7V-
e(a,a)(k) e

k=O

Proof: To compute the power density spectrum S(f) of f we use the

r
Weiner-KhinchinTheorem which states that S(f) is ~ times the auto-

correlation function of f. The auto-correlationfunction of f is

given by

m

$(f)(~) = & ~ e(a,a)(k) d (=-An) and hence we have
nS-m

s(f)(~)

E-19
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P-1

2
zA2p2 k=()

P-1 1“

-2mijk m

f3(a,a)(k)e p
E
J“=-m

cm

2

E

2mj

(Ap)z .-
F(f3)(j)6 (w-—)

AP

Jm--

Corollary: Letg(t) = ~ ~(a(k)) 6 ‘t-Ak)
k=-m

m

and f(t) = ~ ~(a(k)) fO(t-Ak)

Then the power spectral density S(f) of f is given by

s(f)(w) =m s(g)(~) ● E(fo)(~)

E-20
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<7,:

where E(fO) is the energy spectral density of fO

Proof: f is the convolution of fO and g .

E.4-2 POWER SPECTRAL DENSITY OF CARRIER ENCODED WITH A FOUR-STATE SEQUENCE

We may now compute the power density spectrumof a carrier encoded

with a four-state sequence.

Result: The power density spectrum S(f) of the encoded signal

s(t) = ~ cos[~ot + Y(a(k))) fo(t -Lk) = Re (f(t)eiUOt}

k=-co

where, f(t) =
:() ti a(k) fo(t-Ak) is given by

k=-co

S(s)(b.))=

[1
al

1 E(fo)(woo) .
2rj

F(e(a))(j) 6((u-wO) - ~)
F (AP)2

J
“=-m

m

j=-~ I

E-21



Proof: We compute the power density spectrum of the encoded

signal s by taking the fourier transform of its auto-correlation

function R(s) which was shown to be

‘e[iuOTR(f)(T)l

s(s)(~)

~; F(R(s))(oJ) Weiner Khinchin Theorem

hm[[ ]]2 1 F Re eiwo~ R(f)(=) (u) previous result for R(s)

(iLw)[( ) ~]
2 ~ 1 F eiwo~ R(f)(=)(w) + F cl%= R(f)(~) ( ~)

(’(;)(3[( ) 1F R(f)(~)(w-~o) + F(R(f)(~))(~~o)

()[T E(fo)(m-uo) ● S(g)(wuo) + E(fo)(u+uo) ● S(q)(U+Uo)
T 1

Cn

by previous corollary where g(t) = ~ Tl(a(k))6(t-Ak)

k=-cn

E-22
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The result now follows from the previous computation.

Corollary: If fO is the square pulse such that

fo(t) = 1 O<-la and fO(t) = O otherwise then

s(f)(u) =

L

* (LO+WO)A
sin

T

(W+LLIO)A2

2

This result follows from the fact that

E(fo)(~) + ~ ()‘in 2%-
7T

()
WA 2

T

We have shown through the preceding calculations that the power spectral

density of the four-phase encoded signal consists of spectral

multiples of the code repetition frequency and modulated by a

envelope. The amplitude of the spectral lines are determined

lines at

(sin 2x)/x2

by the
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digital fourier transform of the complex auto-correlationfunction

of the encoding four-state sequence. In what follows, we compute

this digital fourier transform for a maximal four-state sequence and

then completely determine the power spectral density of a carrier

encoded with a four-state maximal PN sequence.

Result: Let a be a maximal four-state PN sequence of period

P= 4n -1. We have shown that the auto-correlationfunction of a is

given by:

6(a)(0) = P+ Oj

e(a)(P/3) = -1 ~ (~) j

0(a)(2P/3) = .1 ~ (~) j

e(a)(~) = -1 + Oj Otherwise

Let F(e(a)) be the digital fourier transform of the correlation sequence

e(a) where

F(e(a)) (j) ‘~ e(a)(k)e ~ . Then

k.()
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= (P+l)(l+m) for j s 1 modulo 3
-2

.( P+l)(l Z$) for j S2 modulo 3

F O(a) (j)

1

‘(P+l) forj =0 modulo3; j ZO modulo P

1=1 for j sO modulo P

Proof: F(o)(j)

P-1

I
-2~ijk

O(a)(k)e p

k=O

P-1 P-1

~Re(,(a)(k))e-2;ijk+i~ Im,(a)@)e-2;ijk
k=O k=O

We now evaluate each of the above terms separately by substituting

for the values of the sequence e(a)

P-1

T
-2mijk

Re e(a)e p
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P-1

P-
1

(Uj)k -27ri
u =e— P

k=1

1P+l for j # O modulo P

I 1 for j = O modulo P

P-1

E

-2nijk
i Im e(a)(k)e ~—

k=O

-()
i e -2mijk ~ p+l i ~ 2mij+ P+l

T 3 (–)2 3

[
o for j SO modulo 3

( )[ 1-+sjn~j = +5P+l -
1 2

for j =1 modulo 3

G;— for j E2 modulo 3
2

The above sum thus becomes

1 for j ~0 modulO,P

P+l for j S Omodulo 3; j POmodulo P
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(P+l,(l+) for j =1 modulo 3

6( –)(P+l) 1 T for j s 2 modulo 3
2

.

●

The spectral lines of binary and four-state sequences are illustrated

in Figure E-3.
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Figure E-3. Spectral lines of PN Sequences (A) Binary (B) Four-State
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